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Abstract 

Urban expansion in medium-sized cities of the Global South, though often overlooked, has significant 

ecological and social implications. This study examines Urmia (a city in Iran) over three decades (1990–

2020) using Landsat imagery to quantify urban growth through spatial metrics (UEII, UEDI) and 

Geographically Weighted Regression (GWR) to explore the spatiotemporal patterns of expansion. The 

analysis reveals that built-up areas increased from 2.7% to 8.7%, with a marked concentration at the 

urban periphery. Fragmentation of land, agricultural conversion, and shrinking water bodies highlight 

the emergence of a "Rurban" landscape. Spatially varying relationships identified through GWR suggest 

that expansion intensity is closely linked to landscape configuration. The findings emphasize the urgent 

need for infill development and sustainable land management to curb peripheral sprawl and promote 

more balanced urban growth. Urban expansion in medium-sized cities of the Global South remains an 

underexplored topic despite its growing ecological, social, and economic impacts. This study 

investigates the spatiotemporal dynamics of urban growth in Urmia (Iran) from 1990 to 2020 using 

Landsat imagery and a combination of spatial metrics, including the Urban Expansion Intensity Index 

(UEII) and Urban Expansion Density Index (UEDI). Additionally, Geographically Weighted Regression 

(GWR) is applied to identify spatially varying relationships between expansion intensity and landscape 

features. The findings reveal a substantial increase in built-up areas, from 2.7% in 1990 to 8.7% in 2020, 

with growth primarily concentrated at the urban periphery. This expansion led to the fragmentation of 

land, conversion of agricultural areas, and significant environmental changes, including a reduction in 

water bodies. The results show that the intensity of urban expansion is strongly linked to fragmentation 

and spatial isolation, highlighting the emergence of a "Rurban" landscape—where urban and rural 

patterns increasingly blend. GWR analysis reveals that spatial relationships between growth and 

landscape configuration vary significantly across the study area, indicating the complex nature of urban 

dynamics. These findings emphasize the need for strategic urban planning that prioritizes infill 

development and sustainable land management to prevent further urban sprawl and promote more 

balanced growth. The study contributes new insights into the understanding of urban expansion in 

regions with limited data and offers valuable implications for future urbanization policies in similar 

settings. 
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1- Introduction 

Urbanization has emerged as one of the defining processes of the 21st century, profoundly reshaping 

ecological systems, social structures, and economic trajectories worldwide (Wu et al., 2016; Rimal et 

al., 2017). Over the last seven decades, the proportion of the global population residing in urban areas 

has grown from less than one-third in 1950 to more than half today, and it is projected to reach 66% by 

2050 (Huang et al., 2019). Beyond its demographic magnitude, the nature of urban expansion, whether 

compact, polycentric, fragmented, or sprawling, has become a central concern for urban geography and 

sustainability debates. While urban growth is often linked with economic opportunity and improved 

access to infrastructure, the form and spatial configuration of expansion determine whether its 

consequences are beneficial or detrimental to ecological resilience and social equity. Thus, the question 

is not only how much cities grow, but how they grow. 

Most empirical and theoretical studies of urban expansion have focused on metropolitan regions in North 

America, Europe, and East Asia. These contexts have provided a wealth of insights into concepts such 

as suburbanization, peri-urbanization, compact city strategies, and landscape urbanism (Zhao et al., 

2019; You & Yang, 2017). However, the trajectories of urbanization in the Global South differ 

substantially, shaped by weaker institutional capacity, rapid demographic pressures, environmental 

vulnerabilities, and limited planning frameworks. Within this vast literature, secondary or medium-sized 

cities remain significantly underexplored, despite their pivotal role in absorbing a growing share of the 

urban population (Terfa et al., 2020; Al Rifat & Liu, 2019). Scholars increasingly emphasize that 

overlooking medium-sized cities risks ignoring some of the most pressing sustainability challenges, as 

these cities often experience faster and less regulated growth than megacities (Seto et al., 2022; Jones 

& Kuffer, 2023). 

In Iran, research on urban expansion has concentrated predominantly on Tehran and a few other major 

metropolitan centers (Assari et al., 2016; Madanian et al., 2018). Yet medium-sized cities across the 

country are undergoing rapid transformation. Their expansion often outpaces planning institutions, 

leading to fragmented development, ecological degradation, and socio-spatial inequality (Pourafkari et 

al., 2018; Sidi, 2018). This imbalance underscores a clear research gap: the dynamics of urbanization in 

medium-sized Iranian cities have not been systematically documented, even though these cities 

collectively account for a significant portion of national urban growth. Moreover, secondary cities are 

central to achieving global policy agendas such as Sustainable Development Goal 11 (Sustainable Cities 

and Communities) and climate change adaptation, but their role remains underacknowledged in both 

scholarship and planning practice. 

The city of Urmia, located in West Azerbaijan Province, provides a compelling case to investigate these 

dynamics. With a population exceeding 700,000, Urmia has expanded rapidly since the 1990s in parallel 

with agricultural decline, industrial restructuring, and the ecological crisis of Lake Urmia. The 

expansion of built-up areas has come at the cost of fertile agricultural land, vegetation cover, and surface 

water resources. These changes resonate with global concerns about peri-urban sprawl, food security, 

and ecological vulnerability (Seto et al., 2012; Karimi et al., 2019). The transformation of Urmia 

illustrates the tension between urban development and environmental resilience in secondary cities, 

highlighting how weak institutional capacity exacerbates ecological stress. 

Conceptually, it is also important to consider how transitional landscapes are framed. Internationally, 

the terms peri-urban or suburban are commonly used to describe areas at the urban fringe where rural 

and urban activities overlap. In Iranian planning discourse, however, the notion of rurban space has 

gained prominence. Unlike peri-urban, which emphasizes transitional dynamics, rurban highlights 

hybridity—zones where agricultural production, residential housing, and industrial activities coexist in 

complex patterns. Around Urmia, rurban spaces have proliferated, reflecting dispersed, fragmented, and 

uncoordinated development. Clarifying this conceptual distinction is essential for situating the Iranian 

case within broader comparative debates on landscape urbanism and urban ecology. 



Methodologically, scholars have employed a variety of approaches to examine urban expansion. 

Predictive models such as Cellular Automata–Markov simulations and SLEUTH have been widely used 

in metropolitan contexts to anticipate future land-use change (Mirzakhani, Behzadfar, & Azizi Habashi, 

2025). While powerful, these models require extensive socio-economic datasets and calibration 

parameters that are often unavailable in medium-sized cities. Consequently, descriptive approaches that 

integrate spatial indices and landscape metrics provide a pragmatic yet rigorous framework for analyzing 

growth in data-limited settings. This study follows such an approach, combining three expansion 

indicators—the Average Annual Urban Expansion Rate (AUER), Urban Expansion Intensity Index 

(UEII), and Urban Expansion Differentiation Index (UEDI)—with spatial metrics including 

Aggregation Index (AI), Mean Radius of Gyration (MRoG), and Euclidean Nearest Neighbor (ENN). 

Additionally, Geographically Weighted Regression (GWR) is employed to capture spatially varying 

relationships between expansion intensity and landscape patterns. 

By focusing on Urmia, this study makes both empirical and theoretical contributions. Empirically, it 

documents how urban expansion in a medium-sized Iranian city has unfolded over three decades, 

highlighting its fragmented and dispersed nature. Theoretically, it situates these findings within global 

debates on urban growth, showing how secondary cities reflect but also diverge from patterns observed 

in megacities. Linking the Urmia case to international discourses on sprawl, compact city strategies, and 

the Sustainable Development Goals strengthens the relevance of the findings for both local and global 

audiences. 

Accordingly, this study addresses the following three research questions: 

1. How has urban expansion in Urmia evolved spatially and temporally between 1990 and 2020? 

2. What are the dominant patterns of landscape change—particularly aggregation, compactness, 

and isolation—associated with this expansion? 

3. How do urban expansion intensity and differentiation indices relate to spatial metrics as 

revealed by geographically weighted regression (GWR)? 

By answering these questions, the study contributes to a deeper understanding of how medium-sized 

cities in developing contexts experience urban sprawl. The findings offer practical insights for 

designing infill development strategies, integrated land management, and sustainable growth pathways 

in data-scarce environments, thereby aligning local planning practices with global sustainability and 

climate resilience agendas. 

 

2-Materials and Methods 

2-1- Study Section 

Urbanization refers to the migration of populations from rural to urban areas. Iran is rapidly 

urbanizing; by 2023, over 76% of its population resides in urban areas, compared to only 51% in 1986. 

The nation’s population has steadily grown over the past five decades and is expected to continue this 

trend. 

Urmia, the capital of West Azerbaijan province, lies adjacent to Lake Urmia and covers about 11,230 

hectares. The city slopes from west to east toward the Urmia plain. According to the 2015 census, its 

population was 736,224, ranking it the second most populated city in northwest Iran and the tenth in 

the country overall. 

 

2-2-Land Cover mapping 



Landsat satellite imagery from 1990, 2000, 2010, and 2020 was used to generate land cover maps. 

Land cover classes in Urmia were categorized into four groups: built-up areas, vegetation (forest and 

non-forest), water bodies, and barren lands. All classification procedures were performed in the 

Google Earth Engine platform using an image-averaging approach to minimize atmospheric noise and 

ensure geometric and radiometric consistency. Composite images were generated for each decade by 

averaging a collection of cloud-free summer-season scenes. 

Although image averaging improves data quality, it may introduce minor phenological bias due to 

seasonal vegetation variations. All data were taken from the LANDSAT/LC08/C01/T_SR collection, 

which includes geometrically and atmospherically corrected surface reflectance products. 

Three indices—UI, SAVI, and MNDWI—were chosen to represent land cover based on the primary 

components of land cover. In this study, SAVI was used because of its advantage over NDVI to 

highlight vegetation features. The choice of SAVI was particularly appropriate for the semi-arid 

conditions of Urmia, where soil brightness strongly affects vegetation reflectance. For urban detection, 

the Urban Index (UI) was applied instead of the more commonly used NDBI. A comparative 

assessment confirmed that UI yielded higher classification accuracy for Urmia. Similarly, MNDWI 

was selected for water detection because of its superior performance in identifying shallow water 

features compared to NDWI. 

An indicator of vegetation cover that is measured and tracked using remote sensing is the Soil Adjusted 

Vegetation Index (SAVI). For measuring and tracking vegetation, the SAVI index is an effective tool. 

Vegetation mapping, vegetation health monitoring, land use classification, and crop yield calculation 

are just a few of the GIS applications that use it (Huete, 1988; Qi et al., 1994; Jensen, 2016; Tucker et 

al., 1985). The vegetation index values in areas with sparse vegetation and exposed soil surfaces may 

be impacted by the reflectance of red and near-infrared wavelengths (Huete, 1988). According to Jensen 

(2005) and Li et al. (2016), SAVI makes use of the significant pigment absorption of red light, such as 

the TM 3 band, and the NIR spectral range, such as the TM 4 band, which has high vegetative 

reflectance. Due to SAVI's superior ability to analyses regions with little vegetation, including urban 

areas, and emphasize vegetation traits, we choose to utilize it instead of the normalized difference index 

(NDVI). SAVI is applicable to regions with a minimum of 15% plant cover. But in places where there 

is at least 30% plant cover, NDVI can be applied successfully (Herold et al., 2015). Equation 1 shows 

the soil-adjusted vegetation index (SAVI), where NIR is the near-infrared sensor's reflectance value 

(TM band 4). The color red in the TM sensor indicates the reflectance value of band 3 (red). L is a 

correction factor that has values of 1 for extremely low density and 0 for very high density. An enhanced 

vegetation image was produced, taking into account the medium density of vegetation in the analyzed 

area. By increasing its range, SAVI may differentiate between built-up or dry land and vegetation using 

a value of 0.5. Vegetation, therefore, exhibits strong reflection in the near-infrared range and low 

reflectance in the red band; this is the basis of SAVI. In order to reduce the impact of soil illumination 

on the SAVI value, the soil illumination correction factor is applied (Huete et al., 1991; Zhang et al., 

2003). 

Equation 1: 

SAVI = [(NIR - Red) / (NIR + Red + L)] * (1 + L) 

I is a correction factor, and it goes from very low densities (value = 1) to very high densities (value = 

0). For this reason, SAVI is superior to other vegetation indices, like the Normalized Difference 

Vegetation Index (NDVI), in many ways. Firstly, compared to NDVI, SAVI is less susceptible to soil 

brightness. Second, according to Huete (1988), Qi et al. (1994), and Jensen (2016), SAVI is more 

successful in differentiating between plants and other types of land cover, such as soil and water. 

Equation 2 was used to build the constructed terrain image using Urban Index (UI), following the 

generation of the vegetation image using SAVI. The sensor measures band 4 (near infrared) and band 7 



reflectance values, which are referred to as NIR and SWIR. An effective technique for locating and 

keeping an eye on urban areas is the UI index. Urban area mapping, urban growth monitoring, urban 

land use classification, and urban heat island monitoring are just a few of the GIS applications that 

employ it (Zha et al., 2003; Kawamura et al., 1992; Huang et al., 2019; He et al., 2015). 

Equation 2: 

UI = SWIR – NIR/ SWIR + NIR 

Where: 

UI is an urban index. 

SWIR represents reflectance values in the shortwave infrared (SWIR) band commonly found in 

remote sensing data. 

NIR indicates reflectance values in the near-infrared (NIR) band. 

The idea behind the urban index (UI) is that urban areas have relatively high reflectance in the SWIR 

band due to materials commonly found in cities, such as concrete and asphalt. In contrast, natural or 

non-urban areas typically have lower SWIR reflectance. By calculating UI, it is possible to create an 

index that increases the spectral differences between land cover types and makes it easier to 

distinguish between urban and non-urban areas. 

In order to aid in distinguishing between populated areas and wasteland, the urban index (UI) was 

employed. The Normalized Difference Making Index (NDBI) is less recognizable than the Urban 

Index (UI) in terms of urban characteristics. Band 7 yields the best results when band 5 is not 

employed (Bouhennache et al., 2015; Pratibha et al., 2014). Consequently, these urban index values 

were used instead of the Normalized Difference Making Index (NDBI) data. In general, increasing the 

range of SAVI can differentiate vegetation from built-up land or wasteland. In summary, the urban 

index (UI) has many advantages over other urban indices, such as the normalized difference index 

(NDBI). First, the user interface is less sensitive to atmospheric interference than NDBI. Second, UI is 

more effective in distinguishing between urban areas and other types of land cover, such as soil and 

vegetation. 

A background primarily made up of developed land is distinguished from water using the modified 

normalized water change index (MNDWI). Zhou (2005) claims that, in terms of outcomes, MNDWI 

has done better than the normal water difference index (NDWI). The modified NDWI (MNDWI), 

where the MIR is a mid-infrared band similar to the 5 TM band, is described by equation 3 

(McFeeters, 1996). Due to an increase in the values of water features and a drop in the values of built-

up land, the MNDWI's contrast between water and built-up land will drastically change from positive 

to negative when compared to the NDWI (Hu, 2007). 

Equation 3: 

MNDWI = (Green - SWIR) / (Green + SWIR) 

Where: 

MNDWI: Normalized water change index. 

Green: Indicates the reflectance values in the green spectral band. 

SWIR: Shows reflectance values in the short-wave infrared (SWIR) band. 

To enhance its sensitivity to shallow water and decrease false positives in water detection, Zhou 

(2006) modified the normalized water difference index (NDWI) and introduced MNDWI. The 



foundation of MNDWI is the idea that water has low reflection in the mid-infrared band and high 

reflectivity in the green band. The reason for this is that green light is reflected to the satellite sensor 

and is absorbed by water in the mid-infrared spectrum. Compared to other water indices, including the 

Normalized Difference Water Index (NDWI), MNDWI has a number of advantages. First, MNDWI is 

less sensitive to atmospheric interference than NDWI. Second, MNDWI is more effective in 

distinguishing between water and other land cover types, such as soil and vegetation. This index has 

been widely used in applications related to water resources management, wetland mapping, and flood 

monitoring due to its effectiveness in highlighting the features of open water (Hu, 2006; McFeeters, 

1996; Feyisa et al., 2014; Gao et al., 2009; Zhang et al., 2018). 

Following the creation of the SAVI, MNDWI, and UI pictures, three new photos were used as the bands 

in a new dataset. The correlation between the bands is significantly reduced when the thematic three-

band image is substituted for the original seven-band multispectral image. Then, a fresh image was 

produced by combining three more bands. 

 

The supervised classification procedure was carried out using a support vector machine technique. 

Consequently, Figure 1 illustrates how the four primary types of urban land cover are effectively 

divided: vegetation (high SAVI value), water (high MNDWI values), built-up area (high UI value), and 

barren land (low UI value). To evaluate the reliability of classification, an accuracy assessment was 

conducted using confusion matrices and kappa statistics. Ground-truth samples were collected from 

high-resolution Google Earth imagery. Overall classification accuracy ranged from 86% to 89%, with 

kappa coefficients between 0.82 and 0.88, indicating strong agreement and validating the classified 

maps. A limitation of this approach is the exclusive reliance on Landsat data. Although adequate for 

long-term analysis, higher-resolution datasets such as Sentinel or socio-economic data could provide 

complementary insights, which remain beyond the scope of this study. 

 

 

 

Figure 1: Classified Images of Urmia Urban Area (1990-2020) 

2-3- Gradient Model 
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The gradient model effectively represents spatiotemporal transitions between urban and rural areas 

(McDonnell & Pickett, 1990; Zhang et al., 2016; Cheng et al., 2019; Yang et al., 2022). In this study, it 

was used to analyze Urmia’s expansion across both space and time by integrating remote sensing and 

GIS-based buffer analysis. 

The Central Business District (CBD) was defined as the urban core, surrounded by 20 concentric buffer 

zones (each 1 km wide) covering the entire city. These zones were then divided into eight directional 

sectors—N, NE, E, SE, S, SW, W, NW—to extract and compare built-up area data directionally. This 

approach allows the identification of asymmetric growth patterns and the detection of directional 

preferences in expansion. 

While this model offers a simplified yet practical spatial framework, it assumes a monocentric city form. 

However, Urmia—like many medium-sized Iranian cities—has evolved multiple sub-centers in recent 

decades. This polycentric reality can bias the gradient analysis, particularly in peripheral districts where 

secondary nodes influence land-use transitions. Accordingly, this methodological limitation was 

acknowledged when interpreting results. 

Figure 2 illustrates the spatial delineation of built-up zones and urban expansion in Urmia between 1990 

and 2020. 

 

 

Figure 2: Built-up Lands and Zoning of the Urmia Urban Area in the Period of 1990-2020 

 

2-4- Urban Expansion Measurement 

The pace, volume, and intensity of urban expansion have all been studied, and growth ratio indicators 

and geographic information system (GIS) analytical techniques have been used in several of these 

investigations. Urban expansion intensity index (UEII) (Hu et al., 2007; Herold et al., 2015), landscape 

expansion index (LEI) (Liu et al., 2009), and urban expansion differentiation index (UEDI) are a few 

examples. Certain ones have been utilized on a frequent basis. Urban expansion was measured in this 

study using a mixed method (Heidarinejad, 2017). 

Built up 

 



The first statistical index to determine the average annual urban growth rate is the Average Annual 

Urban growth Rate (AUER) (Equation 4). According to Acheampong et al. (2016), this indicator 

determines the built-up land's average yearly increase during the course of the study period in a case 

study. Although it can be computed for any duration, AUER is typically computed for yearly intervals. 

An effective metric for comprehending and controlling urban growth is AUER. It can be used to 

monitor the rate at which urban areas are growing, pinpoint regions that are seeing fast urbanization, 

and evaluate how urban development affects other forms of land cover (Seto et al., 2012; Angel et al., 

2007; Zhao et al., 2020). 

Equation 4 

AUERi = [(
ULAit2

ULAit1
)

1
∆t
− 1] × 100 

where AUERi is the annual urban expansion rate. ULAit2 and ULAit1 are the areas of unit i at times 

t2 and t1, respectively. AUER is not affected by the size of the spatial unit. ∆t is the study period. 

Furthermore, this study has employed the Urban Expansion Intensity Index (UEII). 

Equation 5 illustrates how the UEII determines a geographical unit's annual average proportion of 

newly built-up land, standardised by the unit's total area (Manesha et al., 2021). The following is its 

formula (Li et al., 2015). 

Equation 5: 

UEIIi =
|ULAit2−ULAit1|

TLAi×∆t
× 100 

Unit I's urban expansion intensity index is denoted by UEIIi, whereas ULAit2 and ULAit1 represent 

the areas within unit I at periods t2 and t1, respectively. The entire area in unit I, t of the research 

period is denoted by TLAi. Consequently, the computation involves splitting the mean yearly rate of 

urban growth by the entire area of a certain geographic region. Higher values of the unitless UEII 

index denote a faster and more intensive rate of urban expansion (MacGregor-Fos et al., 2022; Liu et 

al., 2021; Zhou et al., 2020). 

Changes in the amount of urban area per unit of time can be assessed using the urban growth intensity 

index. This index is important for assessing the geographical variations of urban growth because it 

provides a quantitative assessment of the volume and intensity of urban expansion (Heidarinejad, 

2017; Medayese et al., 2023). Urban expansion will vary depending on the regulation of urban driving 

variables and their geographical consequences during the expansion process. 

The preference for urban growth is the term used to describe this tendency (Alsharif and Pradhan, 2013; 

Heidarinejad, 2017). Urban spatial expansion has been quantitatively evaluated and analyzed in this 

study using UEII. Furthermore, the desire for urban expansion during a given time period was identified 

using UEII. UEII measures the intensity of changes in urban cover over time and represents potential 

for urban expansion. The Urban Expansion Intensity Index (UEII) scores of the 20 concentric regions 

that comprise the region are divided into five UEII regions (Table 1) to reflect the spatial evolution 

pattern of urban land growth (Heidarinejad, 2017; Alsharif et al., 2015). 

Table 1: Range of Urban Expansion Intensity Index 

Range Potentials of Urban Expansions 

0 < UEII ≤ 0.28 Slower development 

0.28 < UEII ≤ 0.59 Low-speed development 

0.59 < UEII ≤ 1.05 Medium-speed development 



1.05 < UEII ≤ 1.92 High-speed development 

UEII  < 1.92 Extremely high-speed development 

Ref: Acheampong et al. (2016); Heidarinejad (2017) 

Furthermore, the Urban Expansion Differentiation Index (UEDI) determines the proportion of the total 

altered area to the growth in the urban area of one unit (proportionally). In contrast to UEII, UEDI 

measures the difference in urban land expansion between various spatial units. It so renders the units 

comparable (Acheampong et al., 2016; Heidarinejad). The differentiation or diversity in urban growth 

patterns in a given area is assessed and quantified using the urban expansion differentiation index 

(UEDI), which is used in land use analysis and urban planning. This index offers insightful information 

about the nature and spatial distribution of urban growth throughout time (Zhao et al., 2020; Yan et al., 

2018). This criterion is useful in evaluating the differentiation of urban land expansion and identifying 

hot spots of urban expansion. The formula for this case is as follows (Li et al., 2015): 

Equation 6: 

UEDIi =
|ULAit2−ULAit1|×ULAit1

|ULAit2−ULAit1|×ULAit1
× 100 

The entire area of unit i at times t2 and t1, respectively, is represented by ULAit1 and ULAit2, while 

the differentiation index of urban expansion in unit i is denoted by UEDIi. Generally speaking, UEDI 

can be divided into three categories: (1) The study region as a whole classifies a region as fast-growing 

when the differentiation index of the constituent geographical unit, or region, is greater than 1; (2) When 

the region differentiation index equals 1, the region is compared to the region; and (3) when the region 

differentiation index is less than 1, in which case the region is defined as a slow-growth region in respect 

to the case study, and Table 2 categorizes the research area as a medium growth area (Acheampong et 

al., 2016; Heidarinejad, 2017). 

Table 2: Range of the Differentiation Index for Urban Expansion 

Range Urban Expansion Differentiation 

UDEI<1 Fast-Growing Area 

UDEI=1 Moderate Growing Area 

UDEI<1 Slow-Growing Area 

Ref: Acheampong et al. (2016); Heidarinejad (2017) 

The integration of AUER, UEII, and UEDI forms a robust descriptive framework for spatiotemporal 

assessment of urbanization. While predictive models such as CA–Markov, SLEUTH, and CLUE-S 

(Mirzakhani, Behzadfar, & Azizi Habashi, 2025) provide forward simulations, they demand detailed 

socio-economic datasets that are often unavailable for medium-sized cities like Urmia. Thus, these 

indices offer a data-efficient alternative, effectively capturing the ecological and structural logic of past 

growth and supporting urban management in data-limited contexts.  

 

2-5- Measurement of Urban Spatial Patterns 

Spatial metrics provide quantitative descriptions of the spatial arrangement of land-use features, 

capturing their size, form, and connectivity. To examine Urmia’s urban expansion, three key dimensions 

of spatial configuration were analyzed using Fragstats 4.2 (McGarigal et al., 2012). These include 

aggregation (AI), compactness (MRoG), and connectivity (ENN_MN). Although numerous metrics 

exist, many are highly intercorrelated (McGarigal et al., 2012). Therefore, we selected a concise set 

representing complementary aspects of spatial structure. 

Quantifying the spatial patterns' accumulation level is a crucial step in urban pattern analysis (Hong et 

al., 2000; Clark & Evans, 1954). He et al. (2001) claim that the aggregation index is a useful tool for 



managing and understanding spatial patterns in the surrounding environment. The aggregation index 

(AI) is a spatial statistic that quantifies the degree to which related characteristics are aggregated or 

clustered together in a landscape or spatial dataset. 

 The aggregation index is the number of adjacencies of a given land cover class divided by the maximum 

number of adjacencies that may potentially belong to that class. It may be more effective since it allows 

one to concentrate on just one class at a time (Alberti, 2008). This index indicates the degree to which 

the objects in a given region are distributed or grouped. Evaluating the spatial distribution of species or 

phenomena is helpful in a number of fields, such as ecology, geography, and urban planning. Because 

this index is class-specific, it is more accurate than other indices that measure landscape aggregation 

generally. Consequently, AI provides a quantitative basis for linking a class's spatial pattern to a specific 

process. The map units have no bearing on the computation because the aggregate index is a ratio 

variable. It may be contrasted with other or comparable picture classes, or even with other similar classes 

of the same image at various resolutions (Hong et al., 2000; Heidarinejad, 2017). The specific formula 

and method for calculating the aggregation index can differ depending on the research question, the type 

of data, and the software used. These methods consider the spatial arrangement of features and compare 

them to a random or uniform distribution to determine whether the features are clustered or scattered. 
In the context of urban expansion, an increase in AI may have two interpretations. On one hand, higher 

AI can indicate compact growth, which is desirable for sustainable urban form and infrastructure 

efficiency. On the other hand, if unregulated, higher AI may reflect overcrowding or the concentration 

of development without adequate services. This duality is important for interpreting results in policy 

terms. 

Compaction indices are calculated to determine the urban footprint. The urban footprint is almost a 

circle. This study uses the mean radius of gyration (MRoG) as a convenient tool to measure the extent 

of patches and joints, which preserves the actual measurement units (meters). The mean radius of 

gyration is a spatial metric that measures the dispersion of habitat patches around a central point. Thus, 

the average gyration index provides insights into how objects are concentrated or dispersed in a region. 

The average radius of the gyration index is equal to the average distance (m) between each cell in the 

patch and the center of the patch (Heidarinejad, 2017; Botequilha et al., 2006; Baker et al., 2015; Rocha 

et al., 2016). As a result, the mean radius of rotation is a useful measure to evaluate the impact of land 

use change on landscapes (Baker et al., 2015). A smaller mean radius of gyration (MRoG) index 

indicates compactness, while a larger mean radius of gyration (MRoG) index indicates that objects are 

more scattered from their center (Wang et al., 2018; Pérez-Hernández et al., 2018). It should be noted 

that the Mean Radius of Rotation Index (MRoG) is a powerful tool for understanding and managing the 

terrain. It is a relatively new measure, but it has quickly gained popularity among climate ecologists and 

researchers from other disciplines (McGarigal et al., 2012; Rocha et al., 2016). While MRoG has been 

less commonly applied in urban studies, its novelty lies in capturing both the dispersion and compaction 

dynamics of urban patches. This metric highlights whether new development is reinforcing a compact 

urban core or dispersing into peripheral rurban areas, making it particularly relevant for medium-sized 

cities experiencing fragmented sprawl. 

An effective spatial measure for determining the average distance between items or points in a collection 

is the Euclidean Mean Nearest Neighbor (ENN_MN). In spatial analysis, knowing the general spatial 

distribution of features or objects is very useful. This measure sheds light on whether items in a study 

area scatter or cluster. Therefore, a spatial statistic that calculates the average distance between a point 

and its nearest neighbor in the same class is called the average Euclidean distance of the nearest 

neighbor. It is computed by dividing the total number of points by the sum of the distances between 

each point and its closest neighbors within a class. According to the shortest straight-line distance 

determined from the cell centers, Euclidean Mean Nearest Neighbor (ENN_MN) determines the 

distance to the closest neighboring patch of the same kind (McGarigal and Marks, 1995; Diggle, 2013; 

Jin and He, 2012; Liu et al., 2019). Euclidean nearest neighbor mean values are never less than zero and 



never have boundaries. This index gets closer to 0 as the distance from the closest neighbor gets smaller. 

The cell size, which is equal to twice the cell size when applying the neighboring patch rule, sets a 

minimum value for this index. The size of the territory, which in this study is the size of the block, sets 

an upper limit. The average Euclidean nearest neighbor is not defined if the patch has no neighbors, that 

is, no other patches of the same class (Heidarinejad, 2017; McGarigal, 2012). As a result, the index's 

value represents the typical separation between an object and its closest neighbors. A smaller value 

denotes clustering or spatial dependence, meaning that objects are more likely to be found in close 

proximity to their immediate neighbors. Conversely, a greater value suggests that the items are dispersed 

more widely or uniformly within the research region (Diggle, 2013; Jin and He, 2012). ENN_MN 

provides critical insights into connectivity and accessibility. Lower ENN values suggest clustered 

development, which may enhance service delivery and transport efficiency, while higher ENN values 

indicate fragmented, isolated growth. This has direct implications for planning pedestrian and transport 

networks, as increased isolation at the periphery can exacerbate socio-spatial inequalities. 

2-6- Regression 

To explore how urban expansion influences spatial patterns, variations in spatial metrics were modeled 

against urban growth indices. The dependent variables included changes in AI, MRoG, and ENN_MN, 

while the independent variables were the Urban Expansion Intensity Index (UEII) and Urban Expansion 

Differentiation Index (UEDI). Among regression approaches, Geographically Weighted Regression 

(GWR) was adopted for its ability to capture spatially varying relationships between variables 

(Heidarinejad, 2017; Fotheringham et al., 2002). Unlike global regression, which assumes constant 

coefficients, GWR estimates a local equation for each spatial unit, providing geographically adaptive 

coefficients that reveal regional disparities. Prior to modeling, diagnostic tests confirmed the absence of 

multicollinearity and significant spatial autocorrelation in residuals. The kernel bandwidth was 

optimized using the Akaike Information Criterion (AIC) to balance model fit and spatial smoothness. 

This regression's equation (Equation 7) can be written as follows (Zhou et al., 2020; Fotheringham et 

al., 2002). 

Equation 7: 

ŷ1 = β0(uivi) +∑βk(uivi)xik + εi
k

 

 

Where yî is the estimated value of the dependent variable for observation i, β0 is the cross-sectional 

variable, βk is the parameter estimate for variable k, xik is the value of the kth variable for i, εi is the 

error term, and (uivi) takes the coordinate location of i. 

It is posited that the influence of nearby observations on each other's parameter estimation is more 

than that of distant observations. A distance decay function with observation i at its center determines 

the weight given to each observation. The distance between polygon centers is used to compute the 

distance between observations when dealing with regional data. Where the weight distance quickly 

approaches zero, a bandwidth adjustment modifies the distance decay function, which might take on 

many shapes. The analyst might choose the bandwidth manually or by optimizing it with an algorithm 

that aims to reduce the cross-validation (CV) score. As an alternative, the Akaike Information 

Criterion (AIC) score can be minimized to determine the bandwidth (Equation 8) (Medayese et al., 

2023; Heidarinejad, 2017; Nakaya et al., 2005). 

Equation 8: 

AICt = 2n loge(σˆ̂) + n loge(2π) + n {
n + tr(S)

n − 2 − tr(S)
} 



 

One benefit of using the AIC technique is that it accounts for the possibility of multiple degrees of 

freedom in models based on different observations. Furthermore, the user can select between a variable 

bandwidth that grows and decreases in the model over regions with sparse observations, or a fixed 

bandwidth that is used for each observation. Regressing regions of dense observations is more crucial 

for the model with a lower AICt value. For the GWR model, the AICt approach was therefore applied 

in this investigation (Medayese et al., 2023; Heidarinejad, 2017; Griffith, 2008). 

3- Results and Discussion 

In this research, the appearance of land use changes in a specific area in four different decades (1990, 

2000, 2010, and 2020) is very important. These data are obtained from remote sensing images and image 

processing techniques, and make it possible to interpret changes in urban expansion, vegetation, water 

resources, and land cover status of the region. 

Table3. Area and Share of Land Use 

Year 1990 2000 2010 2020 

Land use 2Km % 2Km % 2Km % 2Km % 

Vegetation 598.67 47.71 505.70 40.30 482.44 38.45 449.56 35.83 

Built-Up 34.43 2.74 63.13 5.03 87.33 6.96 109.64 8.74 

Water 56.94 4.54 56.46 4.50 24.04 1.92 17.80 1.42 

Barren-Land 564.76 45.01 629.50 50.17 660.98 52.68 677.78 54.02 

 

 

 

Figure 3. Share of Land Uses (1990-2020) 

 

These observed land cover changes are not only physical but also socially driven, reflecting rural–

urban migration, industrial policy shifts, and weak enforcement of land-use regulation. 
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According to the data in Table 3 and Figure 3, in 1990, the total area of the study area was equal to 

1254.80 square kilometers. 47.71% (598.67 square kilometers) belonged to vegetation. This percentage 

gradually decreased in the following years and decreased to 35.83% in 2020. This decrease represents 

the increase in construction activities and urban development, which, on the one hand, requires urban 

development and, on the other hand, affects the issues related to the preservation of natural resources 

and vegetation. Beyond physical land cover change, these dynamics reflect broader socio-economic 

drivers. Rapid migration from surrounding rural areas, coupled with weak land-use regulation, has 

accelerated the conversion of agricultural lands. Industrial policies and the expansion of service 

activities in Urmia have further attracted population inflows, reinforcing urban growth pressures. 

The share of built-up users has also increased greatly in these periods. In 1990, only 2.74% (34.43 km²) 

of the area was built-up. But, in 2020, this number had increased to 8.74% (109.64 square kilometers). 

This increase represents comprehensive urban development and changes in the urban structure of the 

region. 

As for surface waters, their area in 1990 was equal to 4.54% (56.94 square kilometers) of the total area 

and has shown a continuous decrease in the following years. In 2020, only 1.42 percent (17.80 km2) of 

the area was devoted to water. This decrease represents the lack of water resources and changes in the 

region. This issue raises the need for proper management of water resources. These changes are also 

symptomatic of broader environmental stress. The desiccation of Lake Urmia, linked to both climate 

variability and unsustainable water extraction, has intensified barren land expansion. Situating the 

findings within climate change debates underscores how urban growth in Urmia compounds existing 

ecological vulnerabilities. 

Barren lands have also played an important role in these changes. Their area has increased from 45.01 

percent (564.76 square kilometers) in 1990 to 54.02 percent (677.78 square kilometers) in 2020. This 

increase represents the changes in the geological and climatic conditions of the region. 

In general, a detailed analysis of these data shows that several factors have influenced land use changes 

during these four decades. The increase in the built surface and the decrease in plants in cities represent 

the processes of urbanization and urban development. Instead, the reduction of water resources and the 

increase of barren lands represent changes in the geological and climatic conditions of the region. 

 

Table 4. Conversion between Land Uses (KM2) 

Period 

Class 1990-2000 2000-2010 2010-2020 

1->2 21.73 10.95 16.59 

1->3 1.39 1.59 0.29 

1->4 103.54 56.43 57.84 

 74.72 68.98 126.66 مجموع

2->1 4.00 11.73 5.65 

2->3 0.14 1.51 0.09 

2->4 8.35 8.85 14.18 

Total 12.49 22.08 19.92 

3->1 0.03 1.07 2.11 

3->2 0.20 0.62 0.48 

3->4 2.45 36.82 5.43 

Total 2.68 38.52 8.03 

4->1 29.73 32.93 34.06 

4->2 19.29 34.70 25.16 

4->3 0.68 2.93 1.39 



Total 49.70 70.56 60.61 

1- Vegetation 2- Built-up 3-Water 4- Barren 

 

In Table 4, land use transformations in different time frames for four land classes (vegetation, built-up, 

water areas, and barren) are given in the study area. This table shows the changes that have occurred in 

land use during the specified period of time. 

Between 1990 and 2000, 21.73 square kilometers of vegetation land (land class 1) were converted into 

built-up areas (land class 2). This value decreased to 10.95 square kilometers in the next decade. But in 

2010-2020, there was an increasing trend, and vegetation conversion to built-up area was 16.59 square 

kilometers. Similar transformations are observed in land class 1 (vegetation) to land class 3 (water 

areas). These changes show that several vegetated lands have turned into water areas. But these changes 

have decreased in recent decades compared to previous decades. Also, a similar trend is observed in 

converting vegetation to barren. So, in 1990-2000, the conversion rate was 103.54 square kilometers. 

But in the following decades, it has decreased to 56.43 and 57.84 square kilometers. In general, reducing 

vegetation and converting it to other uses, especially barren and built lands, is evident in all decades. In 

the last decade, this conversion has increased. Another significant trend related to converting irrigated 

lands to barren lands, especially in 2000-2010, is that about 36.82 square kilometers of irrigated areas 

have been turned into barren lands. The conversion of barren land into built-up land is also a good 

indication of the result of urban expansion in the urban area of Urmia, the highest amount of which was 

34.70 square kilometers in the years 2000-2010. 

In 1990, the built area was 34.43 square kilometers, which increased over the years and reached 109.64 

square kilometers in 2020. Therefore, the share of built area has also increased in these periods. In 1990, 

the built-up area of the total area was 2.74%, and in 2020 it increased to 8.74%. This increase in the 

share of the built area shows urban growth and urban development in these periods. Furthermore, the 

annualized growth rate (AUER) shows that approximately 83.3% of this increase occurred in the initial 

period. Compared to 25.5% in the last 10-year period, the volume of urban expansion in the first period 

was the highest (Figure 4). 

Overall, the analysis shows that the city expanded continuously during these periods. The built area 

has increased in proportion to the total area. It may indicate urban expansion and population growth. 

 

Figure 4. Area and Share of Total Built-up Land 
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3-1- Evolutionary-temporal Features of Urban Land Expansion 

Every place and direction may experience urbanization in a different way. This phenomenon is 

indicative of the urban area's growth. The Urban Expansion Intensity Index (UEII) adjusts the yearly 

rate of urban growth for every study unit based on its land area. This score was utilized in the current 

study to determine if urban expansion was preferred over a 30-year period in a case study. The built-up 

area intensity in various city regions from 1990 to 2020 is contrasted in Figure 4. 

Figure 5 shows that the highest values of the urban intensity index are from 1990 to 2000. This issue 

indicates the major occurrence of urban expansion in this period. Thus, from the city center to a distance 

of 4 km, it has increased rapidly to a value of 34.88, which indicates the experience of high intensity of 

urban expansion in this area. But the highest intensity of urban expansion occurred at a distance of 16 

km with a value of 69.66. But in the following decades, the intensity of urban expansion is significant 

only up to a radius of 7 km, and from a distance of 8 km from the city center, with increasing distance 

and decreasing intensity of expansion, it has slowly decreased, and the intensity of expansion has 

decreased in peripheral areas. The outcome reveals that Urmia City's central regions are home to the 

region seeing the highest rate of expansion. However, the following decades saw a marked decline in 

the expansion intensity relative to the previous phase. 

 

Figure 5. Changes in the Intensity Index of Urban Expansion in the Central Regions  

 

Figure 6. Urban Expansion Variations in the Intensity Index (UEII) in Different Geographical 

Directions 

The expansion intensity index for Urmia during a 30-year period is compared in Figure 6 in various 

directions within the city. The primary directions of urban expansion throughout the first ten years of 

the 1990s–2000s were north and east. However, the rate of urban growth has accelerated in the north, 
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west, and southwest in the ensuing decades. The tremendous rate at which the populated areas to the 

north of Urmia are expanding is astonishing. 

The difference index, in contrast to the urban expansion intensity index (UEII), normalizes urban 

expansion (UEDI) to the rate of expansion throughout the metropolis, so it strengthens the uniformity 

between the units of spatial expansion (Achiampong et al., 2016). This indicator is frequently used to 

assess the trend of urban expansion and identify regions that experience significant variations in urban 

expansion. 

It is evident from Figure 7's fluctuations in UEDI index values over a 30-year period that the model 

needed to be more reliable. According to the UEDI index, the beginning point in the first period was 

almost equal to 0 (central areas), and in the subsequent periods, it rose in the peripheral areas. The 

examination revealed that the case study's original center has been enlarged in subsequent years. In fact, 

over the past ten years, nearly all inner-city areas have increased their UEDI scores. In other words, over 

time, the central areas close to the previous lands are built, and as a result, urban expansion occurs at 

distances far from the center. Areas located within a radius of 3 to 8 kilometers from the city center have 

grown significantly from 1990 to 2000. The main reason is the addition of urban areas. However, the 

areas located in 9 to 13 km have grown less than those in 13 to 16 km, which can be one of the reasons 

for establishing industries and activities related to agriculture. This illustrates how spatial heterogeneity 

in expansion is strongly shaped by economic policy decisions. Industrial zoning in peripheral areas and 

the decline of agricultural profitability in inner belts have redirected growth corridors, reinforcing 

fragmented sprawl rather than compact development. From 2000 to 2010, however, the largest urban 

expansion occurred in areas 6 and 7 kilometers from the city center, and other areas experienced even 

less growth compared to other decades. From 2010 to 2020, the radius of 8 km from the city center 

experienced the greatest expansion of built-up land. But another important thing that has happened is 

the significant growth of the radius of 11 to 14 kilometers of built-up land. One of the possible reasons 

for this is the land use policies and the transfer of some incompatible industries and services outside the 

city, as well as the growth caused by the addition of rural centers to the city. 

Figure 8 shows the difference index values of urban expansion in different directions. Therefore, in the 

first decade of 1990-2000, the greatest difference and intensity of urban expansion occurred in the 

direction of east and north. But, in the next decade, the desire to expand the built lands in the southwest, 

west, and northwest has increased. Finally, in the decades of 2010-2020, the pattern of urban expansion 

has tended toward the east and northern regions, which is mainly due to the increase in agricultural and 

industrial activities. 

 

Figure 7. UEDI Index Values in Concentric Regions 

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

UEDI 1990-2000 UEDI 2000-2010 UEDI 2010-2020



  

Figure 8. UEDI Index values in Geographical Directions 

In order to better understand and compare the UEDI values, the UEDI pattern in Urmia (hot spot) was 

examined according to three selected patterns. There are three possible expansion classes based on this 

index: 

High (i.e. UEDI>1), 

Medium (i.e. UEDI = 1), and 

Low (i.e. UEDI<1) (Heidarinejad, 2017). 

The top class of UEDI was split into "very high" and "high" subclasses based on the values that were 

obtained. Likewise, there were two categories for the lower class: "low" and "very low". The Jenks 

Natural Breaks method in ArcGIS is used to display the five UEDI score classes in concentric zones in 

Figure 9. The spatial visualization outcomes for directional zones in this category are also displayed in 

Figure 10. 

The acquired data indicated that during the course of two decades, marginal areas were home to the 

hotspots of urban expansion. The north and northeast are experiencing extremely fast expansion, 

whereas the west and south are experiencing the slowest rate of expansion. 
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Figure 9. UEDI Index Values in Concentric Regions 

 

Figure 10. UEDI Index Values in Geographical Directions 

 

3-2- Patterns of Landscape in the Urban Area of Urmia 
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Three geographic land analysis criteria were applied in order to examine and contrast patterns of urban 

expansion. At both the micro and macro levels, the three primary features of the urban pattern—

aggregation, compactness, and isolation—were explained by these spatial criteria. Spatial requirements 

were interpreted for the entire Urmia urban region at the macro level. The analysis of spatial micro-

patterns in concentric zones and in various orientations has persisted in this work. 

Data on changes in land spatial criteria values over time in the Urmia urban area between 1990 and 2020 

are shown in Figure 4. The expansion of additional urban patches is typically factored into the 

distribution of urban areas, as indicated by the rising AI index. The heightened aggregation suggests 

that there was a tendency for the synthetic stains to develop an aggregation pattern. Furthermore, the 

rising trend of ENN_MN demonstrated a decline in the isolation process over the course of the 

investigation. Moreover, compaction in the city showed an increasing trend, according to 

GYRATE_MN. The increase in GYRATION_MN and AI generally indicates the fragmented growth 

and scattered development of the current metropolis in Urmia. 

 

Figure 11. Temporal Changes of Land Spatial Indicators in the Urmia Urban Area 

Temporal changes in spatial measures were interpreted in spatial units in order to provide a more 

comprehensive picture of the pattern of urban expansion in the Urmia urban area. Figure 12 shows the 

evolution of the cumulative index value for 30 years since 1990. This graph shows a similar negative 

trend in the cumulative index value in 20 concentric regions over 30 years. The value of the AI index 

decreased sharply with increasing distance from the city center. Urmia's center sections generally have 

higher cumulative index values. This could result in the emergence of tiny construction sites in the city's 

periphery and surrounding areas. This can become a problem if the city grows through dispersed 

development. 
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Figure 12. AI index Changes Based on Distance from the City Center 

The next graph (Figure 13) of the AI index in the case study in different directions shows how much the 

ratio of each spatial unit of the accumulation process changed from 1990 to 2020. Overall, according to 

the graph, a higher value of AI is recorded in the Southeast (SE), South (S), and Southwest (SW) regions. 

In other words, the patches of land built in these areas have a more cumulative pattern than other areas. 

 

Figure 13. AI Index Changes Based on Geographical Directions 

The Gyration index was used in directed and concentric zones to examine the micro compaction process. 

The Gyration index value variation in Urmia between 1990 and 2020 is depicted in Figure 14. In general, 

it is evident that the Gyration Index declined quickly, reaching its minimum value approximately 8 km 

outside the city center. Then, on the periphery, there has been a consistent tendency. Research has 

generally indicated that the densification process has been accelerating in Urmia's periphery. 
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Figure 14. Gyration Index Changes Based on Distance from the City Center 

The diagram below (Figure 15) compares the Gyration index in directional zones. This graph shows that 

in the 1990s-2000s, the eastern (E) and southern (S) regions recorded high values of the gyration index. 

This process has been similar in the following decades. But, in the following decades, the western part 

of the region has also witnessed the growth of this index. 

 

 

Figure 15. Gyration Index Changes Based on Geographical Directions  

The ENN_MN index, which measures the growth in the distance between areas of the same type of use, 

was used to examine the next pattern (separation or isolation). The change in ENN_MN in peripheral 

regions between 1990 and 2020 is depicted in Figure 16's linear diagram. This figure indicates that there 

is a decrease in the variety of uses as the distance from the city center grows, along with the degree of 

isolation. 
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Figure 16. Changes of the ENN_MN Index Based on the Distance from the City Center  

The directions with the greatest index values during the research period are displayed in the radar 

diagram (Figure 17). It is evident that the directional and peripheral zones have higher ENN_MN values 

overall. Furthermore, the index value in the center regions is significantly lower than in the periphery 

regions, and it has exhibited a consistent trend over time. The graphs had identical initial values, but 

their periphery saw a dramatic increase in value. West (W) and Northeast (NE) have the best separation 

technique. 

 

Figure 17. ENN_MN Index Changes Based on Geographical Directions 

Two phases can be distinguished when examining Urmia's urbanization. A decline in the AI index 

indicates that between 1990 and 2000, the city's core area grew due to the rapid expansion in the city's 

periphery. Furthermore, fresh growth is seen in regions that are divided from one another by open space. 

It displays the city's sweeping growth. Between 2000 and 2010, there was a decline in the rate of urban 

expansion. The accumulation of specks fell significantly during this time, and the city saw a cumulative 

decline in GYRATION_MN. It might suggest that urban patch development has been the main focus of 
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Urmia's ongoing growth, and that this development has been accompanied by a notable rise in ENN_MN 

and a cumulative decline in Gyration. 

3-3- Urban Spatial Patterns and the Consequences of Urban Expansion 

Two spatial indices (growth ratio indices) for gauging urban expansion are UEII and UEDI, as was 

previously mentioned. They are regarded as independent factors to look into the connection between 

spatial patterns and urban growth. Furthermore, the spatial criteria's value is regarded as a dependent 

variable. The GWR model was selected as a useful model to examine the connection between these two 

categories of variables. Table 5 displays the corrected R² and AICt values produced by the GWR model 

for various time periods. The relatively modest R² values suggest that while the model captures 

meaningful spatial relationships, urban expansion in Urmia is also influenced by other socio-economic 

and policy factors not fully represented in the current framework. This limitation should be 

acknowledged when interpreting the results. In this study, the GWR models yielded only moderate R² 

values, suggesting that while spatial metrics explain part of the variation, future research should integrate 

qualitative and socio-economic drivers to more comprehensively capture the dynamics of urban 

expansion”. 

Table 5. The GWR Regression Measures' Outcomes 

Period Spatial metrics Adjusted R² 
AICt 

UEII UEDI UEII UEDI 

1990-2000 AI 0.4571 -0.1402 174.4822 54.6116 

GYRATE_MN 0.4093 0.1429 176.7599 48.9642 

ENN_MN 0.2664 -0.0893 178.6680 53.5632 

2000-2010 

 

 

AI 0.3974 -0.1134 140.6866 87.4393 

GYRATE_MN 0.4646 -0.0422 137.1340 85.4452 

ENN_MN 0.2710 -0.0941 144.4142 86.9415 

2020-2010 AI 0.2347 -0.0349 99.7322 73.1597 

GYRATE_MN 0.2488 0.0912 97.8137 70.7454 

ENN_MN 0.1265 0.1703 101.8860 74.1855 

 

Overall, Table 5 shows higher values for R² and AICt for UEII than for UEDI. The analysis of two 

distinct variables reveals that the index of urban development exhibits a more robust correlation with 

spatial patterns. Mapping these coefficients would further enrich the analysis, as it would reveal where 

spatial associations between expansion intensity and pattern metrics are strongest. While this study 

presents statistical results, spatial visualization is recommended for future research to strengthen 

interpretability. To put it simply, alterations in spatial arrangements are strongly correlated with the 

magnitude of urban expansion. 

The regression coefficients exhibited substantial variation among urbanized locations. The spatial 

distribution of the coefficient indicates that the connections between spatial factors and UEII values 

differ across concentric zones. The coefficients for each spatial pattern exhibited a consistent trend for 

the first two decades, which remained relatively unchanged in the last decade, as illustrated in the 

accompanying graphs. 

The initial graph (Figure 18) depicts the correlation between UEII and AI as influenced by the proximity 

to the urban core over a span of two decades. Initially, a notable positive association was identified at a 



distance of 12 km from the city center. This suggests that the acceleration of expansion can result in a 

rise in the agglomeration process. The negative coefficients observed at a distance of 12 km from the 

city center indicate that the rapid growth of urbanization results in a decline in the development of larger 

urban structures and an increase in the consolidation of land in the peripheral areas of Urmia. Mapping 

the local coefficients would provide an additional layer of insight, allowing visualization of where 

expansion intensity most strongly correlates with aggregation, dispersion, or isolation patterns. This 

spatial visualization is recommended for future research to enhance interpretability. 

 

Figure 18. The Relationship Between UEII and AI Based on the Distance from the City Center 

The shift in relationship values between ENN_MN and UEII in the central sections is depicted in the 

second diagram (Figure 19). Both positive and negative values have been displayed by the separation 

index. Over the course of the investigation, a negative correlation has been found overall. It demonstrates 

how the intensification of urban expansion results in a lessening of the separation process as one moves 

away from the city center. Conversely, the growth of ENN_MN has been positively impacted by urban 

expansion. The AI trend line value and the ENN_MN value exhibit a reversing trend when compared. 

 

Figure 19. The Relationship between ENN_MN and UEII based on Distance from the City 

Center  

Figure 20 illustrates how varied oscillations were seen throughout the study period in the effects of 

expansion on the changes of GYRATION_MN value in various regions. The regions that have suffered 

the most are 17 km out from the city center. The intensification of urban expansion in region 17 has 
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resulted in a decline in the index of gyration and the dispersion process, as indicated by the negative link 

between the intensity of expansion and the index of accumulation (Gyration index). Overall, the GWR 

analysis demonstrated that Urmia City's spatial arrangement may greatly accelerate urban expansion. 

Although GWR was appropriate for analyzing local spatial variation, complementary regression 

frameworks such as spatial lag or spatial error models could strengthen the analysis by capturing broader 

spatial dependencies. Future studies may benefit from integrating these approaches. 

 

Figure 20. Relationship between GYRATION_MN and UEII based on Distance from the City 

Center 

4- Conclusion 

The current study examines the urban expansion of medium-sized cities. In this sense, land use changes 

were addressed first. The results show that during the course of the four decades under investigation, a 

variety of factors have influenced changes in land usage. Growing built-up areas and dwindling plant 

life in Urmia are indicators of the city's increasing urbanization. Rather, the rise in arid areas and the 

decline in water resources represent changes in the climate and geology of the region. The conversion 

of desert land into developed land in the Urmia metropolitan area is a good predictor of the effects of 

urbanization. 

Therefore, in the next step, the urban expansion process of Urmia between 1990 and 2020 will be 

investigated. In this regard, three indicators and two types of boundaries (directional zones and 

concentric circles) have been used. The results show that the area of Urmia City during the periods under 

review has been continuously expanded, and the built area has increased proportionately to the total 

area. Also, the findings indicate that the middle areas of Urimeh city have expanded with high intensity. 

Compared to the first period (1990-2000), the intensity of expansion has decreased significantly in the 

following decades. In the first decade of 1990-2000, the greatest difference and intensity of urban 

expansion occurred in the direction of the east and north of Urmia city. However, in the next decade, 

the desire to expand the built lands in the southwest, west, and northwest has increased. Finally, in the 

decade of 2010-2020, the pattern of urban expansion has tended towards the east and northern regions. 

The main reason is the increase in agricultural and industrial activities. Linking spatial expansion to 

sectoral drivers suggests that industrial relocation and agricultural decline are key factors shaping 

Urmia’s urban form. Therefore, urban land-use policies must explicitly integrate agricultural land 

protection and industrial zoning to reduce unplanned conversions. In the next step, the patterns of the 

landscape in Urmia city have been examined. In general, the growth of Urmia city has been in the form 

of scattered and fragmented development. This is quantitatively reflected in the high ENN_MN values 

at the periphery and the rising MRoG index, which indicates increasing isolation and dispersion of built-

up patches. Such evidence highlights the urgency of policies that promote infill development and 
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densification rather than outward sprawl. The results show that the density process has been increasing 

in the marginal areas of Urmia city. As the distance from the city center increases, segregation also 

increases, which means a decrease in the variety of uses. 

Spatial-geographical regression analysis showed that the spatial pattern of Urmia city can significantly 

intensify urban expansion. 

The results of the present study show that the city of Urmia has experienced urban sprawl in different 

periods. It confirms the study's results by Abedini et al. (2020). In the discussion of the quantification 

of growth patterns, the results of the present study show the efficiency of using UEDI, UEII, and AUER 

indices. This issue is consistent with the results of Heidarinejad's research in 2017 and confirms the 

suitability of his proposed method for studying the patterns of urban expansion in mid-sized cities. 

Examining the characteristics of Urmia's urban growth serves as a useful illustration of Iran's medium 

cities. Evidence from the study suggests that urban sprawl has expanded in Urmia city's periphery due 

to urban expansion. Compared to a more compact pattern, this urban design may result in greater 

ecological and environmental issues. The dispersed pattern on the outskirts of the city has resulted in a 

significant loss of agricultural land, making it imperative to improve the efficiency of land management 

policies and urban land use planning. The study's conclusions lead to the following recommendations: 

Infill development policy: considering that Urmia City has many vacant lands (Abedini & Khalili, 2019). 
The effectiveness of infill policies is directly supported by the aggregation index (AI), which showed 

higher clustering in southern and southeastern directions. This indicates that compact growth is 

achievable if vacant plots within the city are prioritized before allowing further expansion. This potential 

can lead to the optimal use of the existing land and stop the expansion and destruction of the land around 

the city. 

Detailed investigation and monitoring of land use changes: The land use pattern, as one of the most 

sensitive issues in urban planning, is not only a physical issue but also a social, economic, 

environmental, and management issue. On the other hand, it should be given sufficient attention in urban 

development plans, especially the master plan, which is the guiding document for the comprehensive 

development of the city. For example, the gardens inside Urmia remain neglected for a long time until 

they turn into barren lands. Finally, these lands will be converted into a built environment. Therefore, it 

is necessary to control these cases using legal tools such as a comprehensive and detailed city plan. 

Utilizing green infrastructure, such as including green spaces, parks, and natural corridors in urban plans 

to improve environmental quality, provide recreational opportunities, and reduce the heat island effect, 

can be helpful. Creating a green belt can also be useful for curbing urban expansion and protecting 

agricultural and natural areas. Lessons from international experiences—such as compact city strategies 

in East Asia and green belt policies in Europe—can provide valuable guidance. Adapting such practices 

to the Iranian context could help balance growth with ecological sustainability in medium-sized cities 

like Urmia. 

For future research, it is recommended to consider factors driving urban expansion in different spatial 

units (directional and concentric zones) according to the spatial extent of the city. Also, the impact of 

urban expansion on different social groups has shown that urban sprawl has several adverse social 

effects, such as increasing income inequality, social isolation, and reduced access to public services. 

However, more research is needed to understand how these effects are distributed across different social 

groups, such as race, ethnicity, income, and age. Beyond local implications, the case of Urmia aligns 

with international evidence that unmanaged sprawl in secondary cities undermines climate resilience 

and food security. Lessons from compact city strategies in East Asia and green belt approaches in Europe 

may offer transferable insights for Iran’s medium-sized cities. 
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